Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Ping-Hsin Huang, ${ }^{\text {a,b,c }}$ Jiun- Yi Shen, ${ }^{a}$ Yu-Tang Chang, ${ }^{a}$ Yuh-Sheng Wen, ${ }^{\text {a }}$ Ming-Chang P. Yeh ${ }^{\text {b }}$ and Jiann T. Lin ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, ${ }^{\mathbf{b}}$ Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan, and ${ }^{\mathbf{c}}$ Kang-Ning Junior College of Medical Care and Management, Taipei,
Taiwan 114

Correspondence e-mail:
pshuang@webmail.knjc.edu.tw

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.101$
Data-to-parameter ratio $=12.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,4-Dinitro- $N, N, N^{\prime}, N^{\prime}$-tetraphenylthiophene-2,5-diamine

The title compound, $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$, studied with X-ray crystallography, NMR, mass spectrometry and elemental analysis, is presented. The two $\mathrm{C}=\mathrm{C}$ double bonds are slightly shorter than those of the parent thiophene, while the $\mathrm{C}-\mathrm{C}$ single bond is slightly elongated.

Comment

The title compound, (I), has been shown to be an excellent precursor for the production of low-band-gap conjugated polymers and organic light-emitting devices (OLEDs) (Thomas et al., 2002). Standard procedures including bromination, nitration and a palladium-catalysed aromatic $\mathrm{C}-\mathrm{N}$ coupling reaction were used to synthesize the donor $-\pi$ -acceptor-type compound, (I), in high yield (see scheme). The compound is soluble in organic solvents and was purified by column chromatography.

The dihedral angles between the thiophene (S/C2-C5) and benzene rings ($\mathrm{C} 11-\mathrm{C} 16, \mathrm{C} 21-\mathrm{C} 26, \mathrm{C} 31-36$ and $\mathrm{C} 41-46$) are 87.16(6), 79.81(6), 74.49(6) and $72.81(6)^{\circ}$, respectively, and that between the two benzene rings ($\mathrm{C} 11-\mathrm{C} 16$ and $\mathrm{C} 21-\mathrm{C} 26$, C31-36 and C41-46) are 59.98(7) and 74.77(7) ${ }^{\circ}$. The structure can be regarded as consisting of alternating (010) layers. The double bonds of (I) are shorter $[\mathrm{C} 2-\mathrm{C} 3=1.353$ (3) $\AA]$ than those of the parent thiophene $[\mathrm{C} 2-\mathrm{C} 3=1.370$ (2) \AA] , while the $\mathrm{C}-\mathrm{C}$ single bond is slightly elongated $[\mathrm{C} 3-\mathrm{C} 4=$ $1.425(3) \AA$ A compared with the parent thiophene $[\mathrm{C} 3-\mathrm{C} 4=$ 1.423 (2) Å] (Bak et al., 1961). This bond localization in (I) can be attributed to the donor- π-acceptor nature of the substituents, as well as steric repulsion between the two NO_{2} groups.

Experimental

A two-necked round-bottomed flask was charged with $\mathrm{Pd}(\mathrm{OAc})_{2}$ $(0.023 \mathrm{~g}, 1 \mathrm{mmol}), t$-BuONa ($1.15 \mathrm{~g}, 1.2 \mathrm{mmol}$), 2,5 -dibromo-3,4dinitrothiophene $(1.66 \mathrm{~g}, 5 \mathrm{mmol})$ and diphenylamine $(1.68 \mathrm{~g}$, 10 mmol). Dry toluene was added and the reaction mixture was

Received 4 August 2005 Accepted 14 September 2005 Online 21 September 2005
stirred under nitrogen for 10 min . Tri-tert-butylphosphine ($2 \mathrm{mmol} \%$) in dry toluene was added through a syringe $(1.0 \mathrm{mmol}$ of the phosphine in 1 ml of dry toluene). The reaction mixture was heated at 363 K for 20 h . After cooling, the mixture was diluted with diethyl ether and the organic phase was washed with water and brine. After drying over anhydrous MgSO_{4} and removing the volatiles, the residue was purified by column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-hexane as eluent, followed by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH . Crystals suitable for single-crystal X-ray diffraction were grown from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution layered with hexane at room temperature. The compound was obtained as a red solid in 79% yield. FAB MS: m/e 509 $(M+\mathrm{H})^{+} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.09\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 8 \mathrm{H}\right.$, ortho- $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $7.15\left(t, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}\right.$, para $\left.-\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.31\left(t, J=7.7 \mathrm{~Hz}, 8 \mathrm{H}\right.$, meta $\left.-\mathrm{C}_{6} \mathrm{H}_{5}\right)$. Analysis calculated for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$: C 66.13, H 3.96, N 11.02%; found: C 66.35, H 3.67, N 11.42\%.

Crystal data

$\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=508.54$
Monoclinic, $P 2_{h} / c$
$a=9.9075$ (4) A
$b=19.0621$ (7) \AA
$c=13.5418$ (5) \AA
$\beta=108.977$ (2) ${ }^{\circ}$
$V=2418.47(16) \AA^{3}$
$Z=4$

Data collection

Bruker SMART CCD area-detector
diffractometer
φ and ω scans
Absorption correction: none
22681 measured reflections
4264 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.101$
$S=1.07$
4264 reflections
335 parameters
H -atom parameters constrained
$D_{x}=1.397 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3556 reflections
$\theta=2.2-24.7^{\circ}$
$\mu=0.18 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Prism, red
$0.34 \times 0.2 \times 0.18 \mathrm{~mm}$

3379 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-22 \rightarrow 22$
$l=-16 \rightarrow 16$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0352 P)^{2}\right. \\
+1.644 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.92 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{gathered}-0.20 \mathrm{e}^{-3} .
$$

H atoms were positioned geometrically and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.95-0.98 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work is partially supported by the Institute of Chemistry, Academia Sinica, the Department of Chemistry, National

Figure 1
The molecular structure of (I), drawn with 30% probability displacement ellipsoids, showing the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.

Figure 2
Packing diagram for (I), viewed along the c axis. H atoms have been omitted for clarity.

Taiwan Normal University, and Kang-Ning Junior College of Medical Care and Management.

References

Bak, B., Christensen, D., Hansen-Nygaard, L. \& Rastrup-Andersen, J. (1961). J. Mol. Spectrosc. 7, 58-63.

Bruker (2001). SMART and SAINT in APEX2 (Version 1.0-27). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Thomas, K. R. J., Lin, J. T., Tao, Y.-T. \& Chuen, C.-H. (2002). Adv. Mater. 14, 822-826.

